Documentation

Mathlib.AlgebraicGeometry.EllipticCurve.Jacobian

Jacobian coordinates for Weierstrass curves #

This file defines the type of points on a Weierstrass curve as a tuple, consisting of an equivalence class of triples up to scaling by weights, satisfying a Weierstrass equation with a nonsingular condition. This file also defines the negation and addition operations of the group law for this type, and proves that they respect the Weierstrass equation and the nonsingular condition. The fact that they form an abelian group is proven in Mathlib/AlgebraicGeometry/EllipticCurve/Group.lean.

Mathematical background #

A point on the projective plane over a commutative ring R with weights (2, 3, 1) is an equivalence class [x : y : z] of triples (x, y, z) ≠ (0, 0, 0) of elements in R such that (x, y, z) ∼ (x', y', z') if there is some unit u in with (x, y, z) = (u²x', u³y', uz').

Let W be a Weierstrass curve over a field F with coefficients aᵢ. A Jacobian point is a point on the projective plane over F with weights (2, 3, 1) satisfying the (2, 3, 1)-homogeneous Weierstrass equation W(X, Y, Z) = 0 in Jacobian coordinates, where W(X, Y, Z) := Y² + a₁XYZ + a₃YZ³ - (X³ + a₂X²Z² + a₄XZ⁴ + a₆Z⁶). It is nonsingular if its partial derivatives W_X(x, y, z), W_Y(x, y, z), and W_Z(x, y, z) do not vanish simultaneously.

The nonsingular Jacobian points on W can be given negation and addition operations defined by an analogue of the secant-and-tangent process in Mathlib/AlgebraicGeometry/EllipticCurve/Affine.lean, but the polynomials involved are (2, 3, 1)-homogeneous, so any instances of division become multiplication in the Z-coordinate. Most computational proofs are immediate from their analogous proofs for affine coordinates. They can be endowed with an group law, which is uniquely determined by these formulae and follows from an equivalence with the nonsingular points W⟮F⟯ in affine coordinates.

Main definitions #

Main statements #

Implementation notes #

All definitions and lemmas for Weierstrass curves in Jacobian coordinates live in the namespace WeierstrassCurve.Jacobian to distinguish them from those in other coordinates. This is simply an abbreviation for WeierstrassCurve that can be converted using WeierstrassCurve.toJacobian. This can be converted into WeierstrassCurve.Affine using WeierstrassCurve.Jacobian.toAffine. A nonsingular Jacobian point representative can be converted to a nonsingular point in affine coordinates using WeiestrassCurve.Jacobian.Point.toAffine, which lifts to a map on nonsingular Jacobian points using WeiestrassCurve.Jacobian.Point.toAffineLift. Conversely, a nonsingular point in affine coordinates can be converted to a nonsingular Jacobian point using WeierstrassCurve.Jacobian.Point.fromAffine or WeierstrassCurve.Affine.Point.toJacobian.

A point representative is implemented as a term P of type Fin 3 → R, which allows for the vector notation ![x, y, z]. However, P is not syntactically equivalent to the expanded vector ![P x, P y, P z], so the lemmas fin3_def and fin3_def_ext can be used to convert between the two forms. The equivalence of two point representatives P and Q is implemented as an equivalence of orbits of the action of , or equivalently that there is some unit u of R such that P = u • Q. However, u • Q is not syntactically equal to ![u² * Q x, u³ * Q y, u * Q z], so the lemmas smul_fin3 and smul_fin3_ext can be used to convert between the two forms. This file makes extensive use of erw to get around this problem. While erw is often an indication of a problem, in this case it is self-contained and should not cause any issues. It would alternatively be possible to add some automation to assist here. Note that W(X, Y, Z) and its partial derivatives are independent of the point representative, and the nonsingularity condition already implies (x, y, z) ≠ (0, 0, 0), so a nonsingular Jacobian point on W can be given by [x : y : z] and the nonsingular condition on any representative.

The definitions of WeierstrassCurve.Jacobian.addX and WeierstrassCurve.Jacobian.negAddY are given explicitly by large polynomials that are homogeneous of degrees 8 and 12 respectively. Clearing the denominators of their corresponding affine rational functions in Mathlib/AlgebraicGeometry/EllipticCurve/Affine.lean would give polynomials that are homogeneous of degrees 12 and 18 respectively, so their actual definitions are off by powers of a certain polynomial factor that is homogeneous of degree 2. This factor divides their corresponding affine polynomials only modulo the (2, 3, 1)-homogeneous Weierstrass equation, so their large quotient polynomials are calculated explicitly in a computer algebra system. All of this is done to ensure that the definitions of both WeierstrassCurve.Jacobian.dblXYZ and WeierstrassCurve.Jacobian.addXYZ are (2, 3, 1)-homogeneous of degree 4.

Whenever possible, all changes to documentation and naming of definitions and theorems should be mirrored in Mathlib/AlgebraicGeometry/EllipticCurve/Projective.lean.

References #

[J Silverman, The Arithmetic of Elliptic Curves][silverman2009]

Tags #

elliptic curve, rational point, Jacobian coordinates

Weierstrass curves #

@[reducible, inline]

An abbreviation for a Weierstrass curve in Jacobian coordinates.

Equations
Instances For
    @[reducible, inline]

    The conversion from a Weierstrass curve to Jacobian coordinates.

    Equations
    Instances For
      @[reducible, inline]

      The conversion from a Weierstrass curve in Jacobian coordinates to affine coordinates.

      Equations
      Instances For
        theorem WeierstrassCurve.Jacobian.fin3_def {R : Type r} (P : Fin 3R) :
        ![P 0, P 1, P 2] = P
        theorem WeierstrassCurve.Jacobian.fin3_def_ext {R : Type r} (X Y Z : R) :
        ![X, Y, Z] 0 = X ![X, Y, Z] 1 = Y ![X, Y, Z] 2 = Z
        theorem WeierstrassCurve.Jacobian.comp_fin3 {R : Type r} {S : Type s} (f : RS) (X Y Z : R) :
        f ![X, Y, Z] = ![f X, f Y, f Z]

        Jacobian coordinates #

        The scalar multiplication for a Jacobian point representative on a Weierstrass curve.

        Equations
        Instances For
          theorem WeierstrassCurve.Jacobian.smul_fin3 {R : Type r} [CommRing R] (P : Fin 3R) (u : R) :
          u P = ![u ^ 2 * P 0, u ^ 3 * P 1, u * P 2]
          theorem WeierstrassCurve.Jacobian.smul_fin3_ext {R : Type r} [CommRing R] (P : Fin 3R) (u : R) :
          (u P) 0 = u ^ 2 * P 0 (u P) 1 = u ^ 3 * P 1 (u P) 2 = u * P 2
          theorem WeierstrassCurve.Jacobian.comp_smul {R : Type r} {S : Type s} [CommRing R] [CommRing S] (f : R →+* S) (P : Fin 3R) (u : R) :
          f (u P) = f u f P
          @[deprecated WeierstrassCurve.Jacobian.comp_smul (since := "2025-01-30")]
          theorem WeierstrassCurve.Jacobian.map_smul {R : Type r} {S : Type s} [CommRing R] [CommRing S] (f : R →+* S) (P : Fin 3R) (u : R) :
          f (u P) = f u f P

          Alias of WeierstrassCurve.Jacobian.comp_smul.

          The multiplicative action for a Jacobian point representative on a Weierstrass curve.

          Equations
          Instances For
            @[reducible]

            The equivalence setoid for a Jacobian point representative on a Weierstrass curve.

            Equations
            Instances For
              @[reducible, inline]

              The equivalence class of a Jacobian point representative on a Weierstrass curve.

              Equations
              Instances For
                theorem WeierstrassCurve.Jacobian.smul_equiv {R : Type r} [CommRing R] (P : Fin 3R) {u : R} (hu : IsUnit u) :
                u P P
                @[simp]
                theorem WeierstrassCurve.Jacobian.smul_eq {R : Type r} [CommRing R] (P : Fin 3R) {u : R} (hu : IsUnit u) :
                theorem WeierstrassCurve.Jacobian.smul_equiv_smul {R : Type r} [CommRing R] (P Q : Fin 3R) {u v : R} (hu : IsUnit u) (hv : IsUnit v) :
                u P v Q P Q
                theorem WeierstrassCurve.Jacobian.equiv_iff_eq_of_Z_eq' {R : Type r} [CommRing R] {P Q : Fin 3R} (hz : P 2 = Q 2) (mem : Q 2 nonZeroDivisors R) :
                P Q P = Q
                theorem WeierstrassCurve.Jacobian.equiv_iff_eq_of_Z_eq {R : Type r} [CommRing R] [NoZeroDivisors R] {P Q : Fin 3R} (hz : P 2 = Q 2) (hQz : Q 2 0) :
                P Q P = Q
                theorem WeierstrassCurve.Jacobian.Z_eq_zero_of_equiv {R : Type r} [CommRing R] {P Q : Fin 3R} (h : P Q) :
                P 2 = 0 Q 2 = 0
                theorem WeierstrassCurve.Jacobian.X_eq_of_equiv {R : Type r} [CommRing R] {P Q : Fin 3R} (h : P Q) :
                P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2
                theorem WeierstrassCurve.Jacobian.Y_eq_of_equiv {R : Type r} [CommRing R] {P Q : Fin 3R} (h : P Q) :
                P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3
                theorem WeierstrassCurve.Jacobian.not_equiv_of_Z_eq_zero_left {R : Type r} [CommRing R] {P Q : Fin 3R} (hPz : P 2 = 0) (hQz : Q 2 0) :
                ¬P Q
                theorem WeierstrassCurve.Jacobian.not_equiv_of_Z_eq_zero_right {R : Type r} [CommRing R] {P Q : Fin 3R} (hPz : P 2 0) (hQz : Q 2 = 0) :
                ¬P Q
                theorem WeierstrassCurve.Jacobian.not_equiv_of_X_ne {R : Type r} [CommRing R] {P Q : Fin 3R} (hx : P 0 * Q 2 ^ 2 Q 0 * P 2 ^ 2) :
                ¬P Q
                theorem WeierstrassCurve.Jacobian.not_equiv_of_Y_ne {R : Type r} [CommRing R] {P Q : Fin 3R} (hy : P 1 * Q 2 ^ 3 Q 1 * P 2 ^ 3) :
                ¬P Q
                theorem WeierstrassCurve.Jacobian.equiv_of_X_eq_of_Y_eq {F : Type u} [Field F] {P Q : Fin 3F} (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) :
                P Q
                theorem WeierstrassCurve.Jacobian.equiv_some_of_Z_ne_zero {F : Type u} [Field F] {P : Fin 3F} (hPz : P 2 0) :
                P ![P 0 / P 2 ^ 2, P 1 / P 2 ^ 3, 1]
                theorem WeierstrassCurve.Jacobian.X_eq_iff {F : Type u} [Field F] {P Q : Fin 3F} (hPz : P 2 0) (hQz : Q 2 0) :
                P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2 P 0 / P 2 ^ 2 = Q 0 / Q 2 ^ 2
                theorem WeierstrassCurve.Jacobian.Y_eq_iff {F : Type u} [Field F] {P Q : Fin 3F} (hPz : P 2 0) (hQz : Q 2 0) :
                P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3 P 1 / P 2 ^ 3 = Q 1 / Q 2 ^ 3

                Weierstrass equations #

                noncomputable def WeierstrassCurve.Jacobian.polynomial {R : Type r} [CommRing R] (W' : Jacobian R) :

                The polynomial W(X, Y, Z) := Y² + a₁XYZ + a₃YZ³ - (X³ + a₂X²Z² + a₄XZ⁴ + a₆Z⁶) associated to a Weierstrass curve W over a ring R in Jacobian coordinates.

                This is represented as a term of type MvPolynomial (Fin 3) R, where X 0, X 1, and X 2 represent X, Y, and Z respectively.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem WeierstrassCurve.Jacobian.eval_polynomial {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                  (MvPolynomial.eval P) W'.polynomial = P 1 ^ 2 + W'.a₁ * P 0 * P 1 * P 2 + W'.a₃ * P 1 * P 2 ^ 3 - (P 0 ^ 3 + W'.a₂ * P 0 ^ 2 * P 2 ^ 2 + W'.a₄ * P 0 * P 2 ^ 4 + W'.a₆ * P 2 ^ 6)
                  theorem WeierstrassCurve.Jacobian.eval_polynomial_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hPz : P 2 0) :
                  (MvPolynomial.eval P) W.polynomial / P 2 ^ 6 = Polynomial.evalEval (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3) (toAffine W).polynomial
                  def WeierstrassCurve.Jacobian.Equation {R : Type r} [CommRing R] (W' : Jacobian R) (P : Fin 3R) :

                  The proposition that a Jacobian point representative (x, y, z) lies in a Weierstrass curve W.

                  In other words, it satisfies the (2, 3, 1)-homogeneous Weierstrass equation W(X, Y, Z) = 0.

                  Equations
                  Instances For
                    theorem WeierstrassCurve.Jacobian.equation_iff {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                    W'.Equation P P 1 ^ 2 + W'.a₁ * P 0 * P 1 * P 2 + W'.a₃ * P 1 * P 2 ^ 3 - (P 0 ^ 3 + W'.a₂ * P 0 ^ 2 * P 2 ^ 2 + W'.a₄ * P 0 * P 2 ^ 4 + W'.a₆ * P 2 ^ 6) = 0
                    theorem WeierstrassCurve.Jacobian.equation_smul {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) {u : R} (hu : IsUnit u) :
                    W'.Equation (u P) W'.Equation P
                    theorem WeierstrassCurve.Jacobian.equation_of_equiv {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (h : P Q) :
                    theorem WeierstrassCurve.Jacobian.equation_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hPz : P 2 = 0) :
                    W'.Equation P P 1 ^ 2 = P 0 ^ 3
                    theorem WeierstrassCurve.Jacobian.equation_some {R : Type r} [CommRing R] {W' : Jacobian R} (X Y : R) :
                    theorem WeierstrassCurve.Jacobian.equation_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hPz : P 2 0) :
                    W.Equation P (toAffine W).Equation (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3)

                    Nonsingular Weierstrass equations #

                    noncomputable def WeierstrassCurve.Jacobian.polynomialX {R : Type r} [CommRing R] (W' : Jacobian R) :

                    The partial derivative W_X(X, Y, Z) with respect to X of the polynomial W(X, Y, Z) associated to a Weierstrass curve W in Jacobian coordinates.

                    Equations
                    Instances For
                      theorem WeierstrassCurve.Jacobian.eval_polynomialX {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                      (MvPolynomial.eval P) W'.polynomialX = W'.a₁ * P 1 * P 2 - (3 * P 0 ^ 2 + 2 * W'.a₂ * P 0 * P 2 ^ 2 + W'.a₄ * P 2 ^ 4)
                      theorem WeierstrassCurve.Jacobian.eval_polynomialX_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hPz : P 2 0) :
                      (MvPolynomial.eval P) W.polynomialX / P 2 ^ 4 = Polynomial.evalEval (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3) (toAffine W).polynomialX
                      noncomputable def WeierstrassCurve.Jacobian.polynomialY {R : Type r} [CommRing R] (W' : Jacobian R) :

                      The partial derivative W_Y(X, Y, Z) with respect to Y of the polynomial W(X, Y, Z) associated to a Weierstrass curve W in Jacobian coordinates.

                      Equations
                      Instances For
                        theorem WeierstrassCurve.Jacobian.eval_polynomialY {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                        (MvPolynomial.eval P) W'.polynomialY = 2 * P 1 + W'.a₁ * P 0 * P 2 + W'.a₃ * P 2 ^ 3
                        theorem WeierstrassCurve.Jacobian.eval_polynomialY_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hPz : P 2 0) :
                        (MvPolynomial.eval P) W.polynomialY / P 2 ^ 3 = Polynomial.evalEval (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3) (toAffine W).polynomialY
                        noncomputable def WeierstrassCurve.Jacobian.polynomialZ {R : Type r} [CommRing R] (W' : Jacobian R) :

                        The partial derivative W_Z(X, Y, Z) with respect to Z of the polynomial W(X, Y, Z) associated to a Weierstrass curve W in Jacobian coordinates.

                        Equations
                        Instances For
                          theorem WeierstrassCurve.Jacobian.eval_polynomialZ {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                          (MvPolynomial.eval P) W'.polynomialZ = W'.a₁ * P 0 * P 1 + 3 * W'.a₃ * P 1 * P 2 ^ 2 - (2 * W'.a₂ * P 0 ^ 2 * P 2 + 4 * W'.a₄ * P 0 * P 2 ^ 3 + 6 * W'.a₆ * P 2 ^ 5)
                          def WeierstrassCurve.Jacobian.Nonsingular {R : Type r} [CommRing R] (W' : Jacobian R) (P : Fin 3R) :

                          The proposition that a Jacobian point representative (x, y, z) on a Weierstrass curve W is nonsingular.

                          In other words, either W_X(x, y, z) ≠ 0, W_Y(x, y, z) ≠ 0, or W_Z(x, y, z) ≠ 0.

                          Note that this definition is only mathematically accurate for fields.

                          Equations
                          Instances For
                            theorem WeierstrassCurve.Jacobian.nonsingular_iff {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                            W'.Nonsingular P W'.Equation P (W'.a₁ * P 1 * P 2 - (3 * P 0 ^ 2 + 2 * W'.a₂ * P 0 * P 2 ^ 2 + W'.a₄ * P 2 ^ 4) 0 2 * P 1 + W'.a₁ * P 0 * P 2 + W'.a₃ * P 2 ^ 3 0 W'.a₁ * P 0 * P 1 + 3 * W'.a₃ * P 1 * P 2 ^ 2 - (2 * W'.a₂ * P 0 ^ 2 * P 2 + 4 * W'.a₄ * P 0 * P 2 ^ 3 + 6 * W'.a₆ * P 2 ^ 5) 0)
                            theorem WeierstrassCurve.Jacobian.nonsingular_smul {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) {u : R} (hu : IsUnit u) :
                            theorem WeierstrassCurve.Jacobian.nonsingular_of_equiv {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (h : P Q) :
                            theorem WeierstrassCurve.Jacobian.nonsingular_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hPz : P 2 = 0) :
                            W'.Nonsingular P W'.Equation P (3 * P 0 ^ 2 0 2 * P 1 0 W'.a₁ * P 0 * P 1 0)
                            theorem WeierstrassCurve.Jacobian.nonsingular_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hPz : P 2 0) :
                            W.Nonsingular P (toAffine W).Nonsingular (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3)
                            theorem WeierstrassCurve.Jacobian.X_ne_zero_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Jacobian R} [NoZeroDivisors R] {P : Fin 3R} (hP : W'.Nonsingular P) (hPz : P 2 = 0) :
                            P 0 0
                            theorem WeierstrassCurve.Jacobian.isUnit_X_of_Z_eq_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hP : W.Nonsingular P) (hPz : P 2 = 0) :
                            IsUnit (P 0)
                            theorem WeierstrassCurve.Jacobian.Y_ne_zero_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Jacobian R} [NoZeroDivisors R] {P : Fin 3R} (hP : W'.Nonsingular P) (hPz : P 2 = 0) :
                            P 1 0
                            theorem WeierstrassCurve.Jacobian.isUnit_Y_of_Z_eq_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hP : W.Nonsingular P) (hPz : P 2 = 0) :
                            IsUnit (P 1)
                            theorem WeierstrassCurve.Jacobian.equiv_of_Z_eq_zero {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Nonsingular P) (hQ : W.Nonsingular Q) (hPz : P 2 = 0) (hQz : Q 2 = 0) :
                            P Q
                            theorem WeierstrassCurve.Jacobian.equiv_zero_of_Z_eq_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hP : W.Nonsingular P) (hPz : P 2 = 0) :
                            P ![1, 1, 0]
                            theorem WeierstrassCurve.Jacobian.comp_equiv_comp {F : Type u} {K : Type v} [Field F] [Field K] {W : Jacobian F} (f : F →+* K) {P Q : Fin 3F} (hP : W.Nonsingular P) (hQ : W.Nonsingular Q) :
                            f P f Q P Q

                            The proposition that a Jacobian point class on a Weierstrass curve W is nonsingular.

                            If P is a Jacobian point representative on W, then W.NonsingularLift ⟦P⟧ is definitionally equivalent to W.Nonsingular P.

                            Note that this definition is only mathematically accurate for fields.

                            Equations
                            Instances For

                              Negation formulae #

                              def WeierstrassCurve.Jacobian.negY {R : Type r} [CommRing R] (W' : Jacobian R) (P : Fin 3R) :
                              R

                              The Y-coordinate of a representative of -P for a Jacobian point representative P on a Weierstrass curve.

                              Equations
                              Instances For
                                theorem WeierstrassCurve.Jacobian.negY_eq {R : Type r} [CommRing R] {W' : Jacobian R} (X Y Z : R) :
                                W'.negY ![X, Y, Z] = -Y - W'.a₁ * X * Z - W'.a₃ * Z ^ 3
                                theorem WeierstrassCurve.Jacobian.negY_smul {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) (u : R) :
                                W'.negY (u P) = u ^ 3 * W'.negY P
                                theorem WeierstrassCurve.Jacobian.negY_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hPz : P 2 = 0) :
                                W'.negY P = -P 1
                                theorem WeierstrassCurve.Jacobian.negY_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hPz : P 2 0) :
                                W.negY P / P 2 ^ 3 = (toAffine W).negY (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3)
                                theorem WeierstrassCurve.Jacobian.Y_sub_Y_mul_Y_sub_negY {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                (P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) * (P 1 * Q 2 ^ 3 - W'.negY Q * P 2 ^ 3) = 0
                                theorem WeierstrassCurve.Jacobian.Y_eq_of_Y_ne {R : Type r} [CommRing R] {W' : Jacobian R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 Q 1 * P 2 ^ 3) :
                                P 1 * Q 2 ^ 3 = W'.negY Q * P 2 ^ 3
                                theorem WeierstrassCurve.Jacobian.Y_eq_of_Y_ne' {R : Type r} [CommRing R] {W' : Jacobian R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 W'.negY Q * P 2 ^ 3) :
                                P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3
                                theorem WeierstrassCurve.Jacobian.Y_eq_iff' {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hPz : P 2 0) (hQz : Q 2 0) :
                                P 1 * Q 2 ^ 3 = W.negY Q * P 2 ^ 3 P 1 / P 2 ^ 3 = (toAffine W).negY (Q 0 / Q 2 ^ 2) (Q 1 / Q 2 ^ 3)
                                theorem WeierstrassCurve.Jacobian.Y_sub_Y_add_Y_sub_negY {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3 + (P 1 * Q 2 ^ 3 - W'.negY Q * P 2 ^ 3) = (P 1 - W'.negY P) * Q 2 ^ 3
                                theorem WeierstrassCurve.Jacobian.Y_ne_negY_of_Y_ne {R : Type r} [CommRing R] {W' : Jacobian R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 Q 1 * P 2 ^ 3) :
                                P 1 W'.negY P
                                theorem WeierstrassCurve.Jacobian.Y_ne_negY_of_Y_ne' {R : Type r} [CommRing R] {W' : Jacobian R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 W'.negY Q * P 2 ^ 3) :
                                P 1 W'.negY P
                                theorem WeierstrassCurve.Jacobian.Y_eq_negY_of_Y_eq {R : Type r} [CommRing R] {W' : Jacobian R} [NoZeroDivisors R] {P Q : Fin 3R} (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W'.negY Q * P 2 ^ 3) :
                                P 1 = W'.negY P
                                theorem WeierstrassCurve.Jacobian.nonsingular_iff_of_Y_eq_negY {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hPz : P 2 0) (hy : P 1 = W.negY P) :

                                Doubling formulae #

                                noncomputable def WeierstrassCurve.Jacobian.dblU {R : Type r} [CommRing R] (W' : Jacobian R) (P : Fin 3R) :
                                R

                                The unit associated to a representative of 2 • P for a Jacobian point representative P on a Weierstrass curve W that is 2-torsion.

                                More specifically, the unit u such that W.add P P = u • ![1, 1, 0] where P = W.neg P.

                                Equations
                                Instances For
                                  theorem WeierstrassCurve.Jacobian.dblU_eq {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                                  W'.dblU P = W'.a₁ * P 1 * P 2 - (3 * P 0 ^ 2 + 2 * W'.a₂ * P 0 * P 2 ^ 2 + W'.a₄ * P 2 ^ 4)
                                  theorem WeierstrassCurve.Jacobian.dblU_smul {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) (u : R) :
                                  W'.dblU (u P) = u ^ 4 * W'.dblU P
                                  theorem WeierstrassCurve.Jacobian.dblU_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hPz : P 2 = 0) :
                                  W'.dblU P = -3 * P 0 ^ 2
                                  theorem WeierstrassCurve.Jacobian.dblU_ne_zero_of_Y_eq {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Nonsingular P) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W.negY Q * P 2 ^ 3) :
                                  W.dblU P 0
                                  theorem WeierstrassCurve.Jacobian.isUnit_dblU_of_Y_eq {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Nonsingular P) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W.negY Q * P 2 ^ 3) :
                                  IsUnit (W.dblU P)
                                  def WeierstrassCurve.Jacobian.dblZ {R : Type r} [CommRing R] (W' : Jacobian R) (P : Fin 3R) :
                                  R

                                  The Z-coordinate of a representative of 2 • P for a Jacobian point representative P on a Weierstrass curve.

                                  Equations
                                  Instances For
                                    theorem WeierstrassCurve.Jacobian.dblZ_smul {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) (u : R) :
                                    W'.dblZ (u P) = u ^ 4 * W'.dblZ P
                                    theorem WeierstrassCurve.Jacobian.dblZ_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hPz : P 2 = 0) :
                                    W'.dblZ P = 0
                                    theorem WeierstrassCurve.Jacobian.dblZ_of_Y_eq {R : Type r} [CommRing R] {W' : Jacobian R} [NoZeroDivisors R] {P Q : Fin 3R} (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W'.negY Q * P 2 ^ 3) :
                                    W'.dblZ P = 0
                                    theorem WeierstrassCurve.Jacobian.dblZ_ne_zero_of_Y_ne {R : Type r} [CommRing R] {W' : Jacobian R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hPz : P 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 Q 1 * P 2 ^ 3) :
                                    W'.dblZ P 0
                                    theorem WeierstrassCurve.Jacobian.isUnit_dblZ_of_Y_ne {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 Q 1 * P 2 ^ 3) :
                                    IsUnit (W.dblZ P)
                                    theorem WeierstrassCurve.Jacobian.dblZ_ne_zero_of_Y_ne' {R : Type r} [CommRing R] {W' : Jacobian R} [NoZeroDivisors R] {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hPz : P 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 W'.negY Q * P 2 ^ 3) :
                                    W'.dblZ P 0
                                    theorem WeierstrassCurve.Jacobian.isUnit_dblZ_of_Y_ne' {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 W.negY Q * P 2 ^ 3) :
                                    IsUnit (W.dblZ P)
                                    noncomputable def WeierstrassCurve.Jacobian.dblX {R : Type r} [CommRing R] (W' : Jacobian R) (P : Fin 3R) :
                                    R

                                    The X-coordinate of a representative of 2 • P for a Jacobian point representative P on a Weierstrass curve.

                                    Equations
                                    Instances For
                                      theorem WeierstrassCurve.Jacobian.dblX_smul {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) (u : R) :
                                      W'.dblX (u P) = (u ^ 4) ^ 2 * W'.dblX P
                                      theorem WeierstrassCurve.Jacobian.dblX_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
                                      W'.dblX P = (P 0 ^ 2) ^ 2
                                      theorem WeierstrassCurve.Jacobian.dblX_of_Y_eq {R : Type r} [CommRing R] {W' : Jacobian R} [NoZeroDivisors R] {P Q : Fin 3R} (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W'.negY Q * P 2 ^ 3) :
                                      W'.dblX P = W'.dblU P ^ 2
                                      theorem WeierstrassCurve.Jacobian.dblX_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 W.negY Q * P 2 ^ 3) :
                                      W.dblX P / W.dblZ P ^ 2 = (toAffine W).addX (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3))
                                      noncomputable def WeierstrassCurve.Jacobian.negDblY {R : Type r} [CommRing R] (W' : Jacobian R) (P : Fin 3R) :
                                      R

                                      The Y-coordinate of a representative of -(2 • P) for a Jacobian point representative P on a Weierstrass curve.

                                      Equations
                                      Instances For
                                        theorem WeierstrassCurve.Jacobian.negDblY_smul {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) (u : R) :
                                        W'.negDblY (u P) = (u ^ 4) ^ 3 * W'.negDblY P
                                        theorem WeierstrassCurve.Jacobian.negDblY_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
                                        W'.negDblY P = -(P 0 ^ 2) ^ 3
                                        theorem WeierstrassCurve.Jacobian.negDblY_of_Y_eq {R : Type r} [CommRing R] {W' : Jacobian R} [NoZeroDivisors R] {P Q : Fin 3R} (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W'.negY Q * P 2 ^ 3) :
                                        W'.negDblY P = (-W'.dblU P) ^ 3
                                        theorem WeierstrassCurve.Jacobian.negDblY_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 W.negY Q * P 2 ^ 3) :
                                        W.negDblY P / W.dblZ P ^ 3 = (toAffine W).negAddY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3))
                                        noncomputable def WeierstrassCurve.Jacobian.dblY {R : Type r} [CommRing R] (W' : Jacobian R) (P : Fin 3R) :
                                        R

                                        The Y-coordinate of a representative of 2 • P for a Jacobian point representative P on a Weierstrass curve.

                                        Equations
                                        Instances For
                                          theorem WeierstrassCurve.Jacobian.dblY_smul {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) (u : R) :
                                          W'.dblY (u P) = (u ^ 4) ^ 3 * W'.dblY P
                                          theorem WeierstrassCurve.Jacobian.dblY_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
                                          W'.dblY P = (P 0 ^ 2) ^ 3
                                          theorem WeierstrassCurve.Jacobian.dblY_of_Y_eq {R : Type r} [CommRing R] {W' : Jacobian R} [NoZeroDivisors R] {P Q : Fin 3R} (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W'.negY Q * P 2 ^ 3) :
                                          W'.dblY P = W'.dblU P ^ 3
                                          theorem WeierstrassCurve.Jacobian.dblY_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 W.negY Q * P 2 ^ 3) :
                                          W.dblY P / W.dblZ P ^ 3 = (toAffine W).addY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3))
                                          noncomputable def WeierstrassCurve.Jacobian.dblXYZ {R : Type r} [CommRing R] (W' : Jacobian R) (P : Fin 3R) :
                                          Fin 3R

                                          The coordinates of a representative of 2 • P for a Jacobian point representative P on a Weierstrass curve.

                                          Equations
                                          Instances For
                                            theorem WeierstrassCurve.Jacobian.dblXYZ_X {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                                            W'.dblXYZ P 0 = W'.dblX P
                                            theorem WeierstrassCurve.Jacobian.dblXYZ_Y {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                                            W'.dblXYZ P 1 = W'.dblY P
                                            theorem WeierstrassCurve.Jacobian.dblXYZ_Z {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                                            W'.dblXYZ P 2 = W'.dblZ P
                                            theorem WeierstrassCurve.Jacobian.dblXYZ_smul {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) (u : R) :
                                            W'.dblXYZ (u P) = u ^ 4 W'.dblXYZ P
                                            theorem WeierstrassCurve.Jacobian.dblXYZ_of_Z_eq_zero {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
                                            W'.dblXYZ P = P 0 ^ 2 ![1, 1, 0]
                                            theorem WeierstrassCurve.Jacobian.dblXYZ_of_Y_eq' {R : Type r} [CommRing R] {W' : Jacobian R} [NoZeroDivisors R] {P Q : Fin 3R} (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W'.negY Q * P 2 ^ 3) :
                                            W'.dblXYZ P = ![W'.dblU P ^ 2, W'.dblU P ^ 3, 0]
                                            theorem WeierstrassCurve.Jacobian.dblXYZ_of_Y_eq {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W.negY Q * P 2 ^ 3) :
                                            W.dblXYZ P = W.dblU P ![1, 1, 0]
                                            theorem WeierstrassCurve.Jacobian.dblXYZ_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 W.negY Q * P 2 ^ 3) :
                                            W.dblXYZ P = W.dblZ P ![(toAffine W).addX (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), (toAffine W).addY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), 1]

                                            Addition formulae #

                                            def WeierstrassCurve.Jacobian.addU {F : Type u} [Field F] (P Q : Fin 3F) :
                                            F

                                            The unit associated to a representative of P + Q for two Jacobian point representatives P and Q on a Weierstrass curve W that are not 2-torsion.

                                            More specifically, the unit u such that W.add P Q = u • ![1, 1, 0] where P x / P z ^ 2 = Q x / Q z ^ 2 but P ≠ W.neg P.

                                            Equations
                                            Instances For
                                              theorem WeierstrassCurve.Jacobian.addU_smul {F : Type u} [Field F] {P Q : Fin 3F} (hPz : P 2 0) (hQz : Q 2 0) {u v : F} (hu : u 0) (hv : v 0) :
                                              addU (u P) (v Q) = (u * v) ^ 2 * addU P Q
                                              theorem WeierstrassCurve.Jacobian.addU_of_Z_eq_zero_left {F : Type u} [Field F] {P Q : Fin 3F} (hPz : P 2 = 0) :
                                              addU P Q = 0
                                              theorem WeierstrassCurve.Jacobian.addU_of_Z_eq_zero_right {F : Type u} [Field F] {P Q : Fin 3F} (hQz : Q 2 = 0) :
                                              addU P Q = 0
                                              theorem WeierstrassCurve.Jacobian.addU_ne_zero_of_Y_ne {F : Type u} [Field F] {P Q : Fin 3F} (hPz : P 2 0) (hQz : Q 2 0) (hy : P 1 * Q 2 ^ 3 Q 1 * P 2 ^ 3) :
                                              addU P Q 0
                                              theorem WeierstrassCurve.Jacobian.isUnit_addU_of_Y_ne {F : Type u} [Field F] {P Q : Fin 3F} (hPz : P 2 0) (hQz : Q 2 0) (hy : P 1 * Q 2 ^ 3 Q 1 * P 2 ^ 3) :
                                              IsUnit (addU P Q)
                                              def WeierstrassCurve.Jacobian.addZ {R : Type r} [CommRing R] (P Q : Fin 3R) :
                                              R

                                              The Z-coordinate of a representative of P + Q for two distinct Jacobian point representatives P and Q on a Weierstrass curve.

                                              If the representatives of P and Q are equal, then this returns the value 0.

                                              Equations
                                              Instances For
                                                theorem WeierstrassCurve.Jacobian.addZ_smul {R : Type r} [CommRing R] (P Q : Fin 3R) (u v : R) :
                                                addZ (u P) (v Q) = (u * v) ^ 2 * addZ P Q
                                                theorem WeierstrassCurve.Jacobian.addZ_self {R : Type r} [CommRing R] (P : Fin 3R) :
                                                addZ P P = 0
                                                theorem WeierstrassCurve.Jacobian.addZ_of_Z_eq_zero_left {R : Type r} [CommRing R] {P Q : Fin 3R} (hPz : P 2 = 0) :
                                                addZ P Q = P 0 * Q 2 * Q 2
                                                theorem WeierstrassCurve.Jacobian.addZ_of_Z_eq_zero_right {R : Type r} [CommRing R] {P Q : Fin 3R} (hQz : Q 2 = 0) :
                                                addZ P Q = -(Q 0 * P 2) * P 2
                                                theorem WeierstrassCurve.Jacobian.addZ_of_X_eq {R : Type r} [CommRing R] {P Q : Fin 3R} (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                addZ P Q = 0
                                                theorem WeierstrassCurve.Jacobian.addZ_ne_zero_of_X_ne {R : Type r} [CommRing R] {P Q : Fin 3R} (hx : P 0 * Q 2 ^ 2 Q 0 * P 2 ^ 2) :
                                                addZ P Q 0
                                                theorem WeierstrassCurve.Jacobian.isUnit_addZ_of_X_ne {F : Type u} [Field F] {P Q : Fin 3F} (hx : P 0 * Q 2 ^ 2 Q 0 * P 2 ^ 2) :
                                                IsUnit (addZ P Q)
                                                def WeierstrassCurve.Jacobian.addX {R : Type r} [CommRing R] (W' : Jacobian R) (P Q : Fin 3R) :
                                                R

                                                The X-coordinate of a representative of P + Q for two distinct Jacobian point representatives P and Q on a Weierstrass curve.

                                                If the representatives of P and Q are equal, then this returns the value 0.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  theorem WeierstrassCurve.Jacobian.addX_eq' {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) :
                                                  W'.addX P Q * (P 2 * Q 2) ^ 2 = (P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) ^ 2 + W'.a₁ * (P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) * P 2 * Q 2 * addZ P Q - W'.a₂ * P 2 ^ 2 * Q 2 ^ 2 * addZ P Q ^ 2 - P 0 * Q 2 ^ 2 * addZ P Q ^ 2 - Q 0 * P 2 ^ 2 * addZ P Q ^ 2
                                                  theorem WeierstrassCurve.Jacobian.addX_eq {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) :
                                                  W.addX P Q = ((P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) ^ 2 + W.a₁ * (P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) * P 2 * Q 2 * addZ P Q - W.a₂ * P 2 ^ 2 * Q 2 ^ 2 * addZ P Q ^ 2 - P 0 * Q 2 ^ 2 * addZ P Q ^ 2 - Q 0 * P 2 ^ 2 * addZ P Q ^ 2) / (P 2 * Q 2) ^ 2
                                                  theorem WeierstrassCurve.Jacobian.addX_smul {R : Type r} [CommRing R] {W' : Jacobian R} (P Q : Fin 3R) (u v : R) :
                                                  W'.addX (u P) (v Q) = ((u * v) ^ 2) ^ 2 * W'.addX P Q
                                                  theorem WeierstrassCurve.Jacobian.addX_self {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hP : W'.Equation P) :
                                                  W'.addX P P = 0
                                                  theorem WeierstrassCurve.Jacobian.addX_of_Z_eq_zero_left {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hPz : P 2 = 0) :
                                                  W'.addX P Q = (P 0 * Q 2) ^ 2 * Q 0
                                                  theorem WeierstrassCurve.Jacobian.addX_of_Z_eq_zero_right {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hQz : Q 2 = 0) :
                                                  W'.addX P Q = (-(Q 0 * P 2)) ^ 2 * P 0
                                                  theorem WeierstrassCurve.Jacobian.addX_of_X_eq' {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                  W'.addX P Q * (P 2 * Q 2) ^ 2 = (P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) ^ 2
                                                  theorem WeierstrassCurve.Jacobian.addX_of_X_eq {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                  W.addX P Q = addU P Q ^ 2
                                                  theorem WeierstrassCurve.Jacobian.addX_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 Q 0 * P 2 ^ 2) :
                                                  W.addX P Q / addZ P Q ^ 2 = (toAffine W).addX (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3))
                                                  def WeierstrassCurve.Jacobian.negAddY {R : Type r} [CommRing R] (W' : Jacobian R) (P Q : Fin 3R) :
                                                  R

                                                  The Y-coordinate of a representative of -(P + Q) for two distinct Jacobian point representatives P and Q on a Weierstrass curve.

                                                  If the representatives of P and Q are equal, then this returns the value 0.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    theorem WeierstrassCurve.Jacobian.negAddY_eq' {R : Type r} [CommRing R] {W' : Jacobian R} (P Q : Fin 3R) :
                                                    W'.negAddY P Q * (P 2 * Q 2) ^ 3 = (P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) * (W'.addX P Q * (P 2 * Q 2) ^ 2 - P 0 * Q 2 ^ 2 * addZ P Q ^ 2) + P 1 * Q 2 ^ 3 * addZ P Q ^ 3
                                                    theorem WeierstrassCurve.Jacobian.negAddY_eq {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hPz : P 2 0) (hQz : Q 2 0) :
                                                    W.negAddY P Q = ((P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) * (W.addX P Q * (P 2 * Q 2) ^ 2 - P 0 * Q 2 ^ 2 * addZ P Q ^ 2) + P 1 * Q 2 ^ 3 * addZ P Q ^ 3) / (P 2 * Q 2) ^ 3
                                                    theorem WeierstrassCurve.Jacobian.negAddY_smul {R : Type r} [CommRing R] {W' : Jacobian R} (P Q : Fin 3R) (u v : R) :
                                                    W'.negAddY (u P) (v Q) = ((u * v) ^ 2) ^ 3 * W'.negAddY P Q
                                                    theorem WeierstrassCurve.Jacobian.negAddY_self {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                                                    W'.negAddY P P = 0
                                                    theorem WeierstrassCurve.Jacobian.negAddY_of_Z_eq_zero_left {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
                                                    W'.negAddY P Q = (P 0 * Q 2) ^ 3 * W'.negY Q
                                                    theorem WeierstrassCurve.Jacobian.negAddY_of_Z_eq_zero_right {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hQ : W'.Equation Q) (hQz : Q 2 = 0) :
                                                    W'.negAddY P Q = (-(Q 0 * P 2)) ^ 3 * W'.negY P
                                                    theorem WeierstrassCurve.Jacobian.negAddY_of_X_eq' {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                    W'.negAddY P Q * (P 2 * Q 2) ^ 3 = (P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3) ^ 3
                                                    theorem WeierstrassCurve.Jacobian.negAddY_of_X_eq {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                    W.negAddY P Q = (-addU P Q) ^ 3
                                                    theorem WeierstrassCurve.Jacobian.negAddY_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 Q 0 * P 2 ^ 2) :
                                                    W.negAddY P Q / addZ P Q ^ 3 = (toAffine W).negAddY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3))
                                                    def WeierstrassCurve.Jacobian.addY {R : Type r} [CommRing R] (W' : Jacobian R) (P Q : Fin 3R) :
                                                    R

                                                    The Y-coordinate of a representative of P + Q for two distinct Jacobian point representatives P and Q on a Weierstrass curve.

                                                    If the representatives of P and Q are equal, then this returns the value 0.

                                                    Equations
                                                    Instances For
                                                      theorem WeierstrassCurve.Jacobian.addY_smul {R : Type r} [CommRing R] {W' : Jacobian R} (P Q : Fin 3R) (u v : R) :
                                                      W'.addY (u P) (v Q) = ((u * v) ^ 2) ^ 3 * W'.addY P Q
                                                      theorem WeierstrassCurve.Jacobian.addY_self {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hP : W'.Equation P) :
                                                      W'.addY P P = 0
                                                      theorem WeierstrassCurve.Jacobian.addY_of_Z_eq_zero_left {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
                                                      W'.addY P Q = (P 0 * Q 2) ^ 3 * Q 1
                                                      theorem WeierstrassCurve.Jacobian.addY_of_Z_eq_zero_right {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hQ : W'.Equation Q) (hQz : Q 2 = 0) :
                                                      W'.addY P Q = (-(Q 0 * P 2)) ^ 3 * P 1
                                                      theorem WeierstrassCurve.Jacobian.addY_of_X_eq' {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hP : W'.Equation P) (hQ : W'.Equation Q) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                      W'.addY P Q * (P 2 * Q 2) ^ 3 = (-(P 1 * Q 2 ^ 3 - Q 1 * P 2 ^ 3)) ^ 3
                                                      theorem WeierstrassCurve.Jacobian.addY_of_X_eq {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                      W.addY P Q = addU P Q ^ 3
                                                      theorem WeierstrassCurve.Jacobian.addY_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 Q 0 * P 2 ^ 2) :
                                                      W.addY P Q / addZ P Q ^ 3 = (toAffine W).addY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3))
                                                      noncomputable def WeierstrassCurve.Jacobian.addXYZ {R : Type r} [CommRing R] (W' : Jacobian R) (P Q : Fin 3R) :
                                                      Fin 3R

                                                      The coordinates of a representative of P + Q for two distinct Jacobian point representatives P and Q on a Weierstrass curve.

                                                      If the representatives of P and Q are equal, then this returns the value ![0, 0, 0].

                                                      Equations
                                                      Instances For
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_X {R : Type r} [CommRing R] {W' : Jacobian R} (P Q : Fin 3R) :
                                                        W'.addXYZ P Q 0 = W'.addX P Q
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_Y {R : Type r} [CommRing R] {W' : Jacobian R} (P Q : Fin 3R) :
                                                        W'.addXYZ P Q 1 = W'.addY P Q
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_Z {R : Type r} [CommRing R] {W' : Jacobian R} (P Q : Fin 3R) :
                                                        W'.addXYZ P Q 2 = addZ P Q
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_smul {R : Type r} [CommRing R] {W' : Jacobian R} (P Q : Fin 3R) (u v : R) :
                                                        W'.addXYZ (u P) (v Q) = (u * v) ^ 2 W'.addXYZ P Q
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_self {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hP : W'.Equation P) :
                                                        W'.addXYZ P P = ![0, 0, 0]
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_of_Z_eq_zero_left {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) :
                                                        W'.addXYZ P Q = (P 0 * Q 2) Q
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_of_Z_eq_zero_right {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hQ : W'.Equation Q) (hQz : Q 2 = 0) :
                                                        W'.addXYZ P Q = -(Q 0 * P 2) P
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_of_X_eq {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) :
                                                        W.addXYZ P Q = addU P Q ![1, 1, 0]
                                                        theorem WeierstrassCurve.Jacobian.addXYZ_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 Q 0 * P 2 ^ 2) :
                                                        W.addXYZ P Q = addZ P Q ![(toAffine W).addX (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), (toAffine W).addY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), 1]

                                                        Negation on point representatives #

                                                        def WeierstrassCurve.Jacobian.neg {R : Type r} [CommRing R] (W' : Jacobian R) (P : Fin 3R) :
                                                        Fin 3R

                                                        The negation of a Jacobian point representative on a Weierstrass curve.

                                                        Equations
                                                        Instances For
                                                          theorem WeierstrassCurve.Jacobian.neg_X {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                                                          W'.neg P 0 = P 0
                                                          theorem WeierstrassCurve.Jacobian.neg_Y {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                                                          W'.neg P 1 = W'.negY P
                                                          theorem WeierstrassCurve.Jacobian.neg_Z {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                                                          W'.neg P 2 = P 2
                                                          theorem WeierstrassCurve.Jacobian.neg_smul {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) (u : R) :
                                                          W'.neg (u P) = u W'.neg P
                                                          theorem WeierstrassCurve.Jacobian.neg_smul_equiv {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) {u : R} (hu : IsUnit u) :
                                                          W'.neg (u P) W'.neg P
                                                          theorem WeierstrassCurve.Jacobian.neg_equiv {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (h : P Q) :
                                                          W'.neg P W'.neg Q
                                                          theorem WeierstrassCurve.Jacobian.neg_of_Z_eq_zero' {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hPz : P 2 = 0) :
                                                          W'.neg P = ![P 0, -P 1, 0]
                                                          theorem WeierstrassCurve.Jacobian.neg_of_Z_eq_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hP : W.Nonsingular P) (hPz : P 2 = 0) :
                                                          W.neg P = -(P 1 / P 0) ![1, 1, 0]
                                                          theorem WeierstrassCurve.Jacobian.neg_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hPz : P 2 0) :
                                                          W.neg P = P 2 ![P 0 / P 2 ^ 2, (toAffine W).negY (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3), 1]
                                                          theorem WeierstrassCurve.Jacobian.nonsingular_neg {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hP : W.Nonsingular P) :
                                                          theorem WeierstrassCurve.Jacobian.addZ_neg {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                                                          addZ P (W'.neg P) = 0
                                                          theorem WeierstrassCurve.Jacobian.addX_neg {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hP : W'.Equation P) :
                                                          W'.addX P (W'.neg P) = W'.dblZ P ^ 2
                                                          theorem WeierstrassCurve.Jacobian.negAddY_neg {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hP : W'.Equation P) :
                                                          W'.negAddY P (W'.neg P) = W'.dblZ P ^ 3
                                                          theorem WeierstrassCurve.Jacobian.addY_neg {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hP : W'.Equation P) :
                                                          W'.addY P (W'.neg P) = -W'.dblZ P ^ 3
                                                          theorem WeierstrassCurve.Jacobian.addXYZ_neg {R : Type r} [CommRing R] {W' : Jacobian R} {P : Fin 3R} (hP : W'.Equation P) :
                                                          W'.addXYZ P (W'.neg P) = -W'.dblZ P ![1, 1, 0]

                                                          The negation of a Jacobian point class on a Weierstrass curve W.

                                                          If P is a Jacobian point representative on W, then W.negMap ⟦P⟧ is definitionally equivalent to W.neg P.

                                                          Equations
                                                          Instances For
                                                            theorem WeierstrassCurve.Jacobian.negMap_eq {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                                                            theorem WeierstrassCurve.Jacobian.negMap_of_Z_eq_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hP : W.Nonsingular P) (hPz : P 2 = 0) :
                                                            theorem WeierstrassCurve.Jacobian.negMap_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hPz : P 2 0) :
                                                            W.negMap P = ![P 0 / P 2 ^ 2, (toAffine W).negY (P 0 / P 2 ^ 2) (P 1 / P 2 ^ 3), 1]

                                                            Addition on point representatives #

                                                            noncomputable def WeierstrassCurve.Jacobian.add {R : Type r} [CommRing R] (W' : Jacobian R) (P Q : Fin 3R) :
                                                            Fin 3R

                                                            The addition of two Jacobian point representatives on a Weierstrass curve.

                                                            Equations
                                                            Instances For
                                                              theorem WeierstrassCurve.Jacobian.add_of_equiv {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (h : P Q) :
                                                              W'.add P Q = W'.dblXYZ P
                                                              theorem WeierstrassCurve.Jacobian.add_smul_of_equiv {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (h : P Q) {u v : R} (hu : IsUnit u) (hv : IsUnit v) :
                                                              W'.add (u P) (v Q) = u ^ 4 W'.add P Q
                                                              theorem WeierstrassCurve.Jacobian.add_self {R : Type r} [CommRing R] {W' : Jacobian R} (P : Fin 3R) :
                                                              W'.add P P = W'.dblXYZ P
                                                              theorem WeierstrassCurve.Jacobian.add_of_eq {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (h : P = Q) :
                                                              W'.add P Q = W'.dblXYZ P
                                                              theorem WeierstrassCurve.Jacobian.add_of_not_equiv {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (h : ¬P Q) :
                                                              W'.add P Q = W'.addXYZ P Q
                                                              theorem WeierstrassCurve.Jacobian.add_smul_of_not_equiv {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (h : ¬P Q) {u v : R} (hu : IsUnit u) (hv : IsUnit v) :
                                                              W'.add (u P) (v Q) = (u * v) ^ 2 W'.add P Q
                                                              theorem WeierstrassCurve.Jacobian.add_smul_equiv {R : Type r} [CommRing R] {W' : Jacobian R} (P Q : Fin 3R) {u v : R} (hu : IsUnit u) (hv : IsUnit v) :
                                                              W'.add (u P) (v Q) W'.add P Q
                                                              theorem WeierstrassCurve.Jacobian.add_equiv {R : Type r} [CommRing R] {W' : Jacobian R} {P P' Q Q' : Fin 3R} (hP : P P') (hQ : Q Q') :
                                                              W'.add P Q W'.add P' Q'
                                                              theorem WeierstrassCurve.Jacobian.add_of_Z_eq_zero {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Nonsingular P) (hQ : W.Nonsingular Q) (hPz : P 2 = 0) (hQz : Q 2 = 0) :
                                                              W.add P Q = P 0 ^ 2 ![1, 1, 0]
                                                              theorem WeierstrassCurve.Jacobian.add_of_Z_eq_zero_left {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hP : W'.Equation P) (hPz : P 2 = 0) (hQz : Q 2 0) :
                                                              W'.add P Q = (P 0 * Q 2) Q
                                                              theorem WeierstrassCurve.Jacobian.add_of_Z_eq_zero_right {R : Type r} [CommRing R] {W' : Jacobian R} {P Q : Fin 3R} (hQ : W'.Equation Q) (hPz : P 2 0) (hQz : Q 2 = 0) :
                                                              W'.add P Q = -(Q 0 * P 2) P
                                                              theorem WeierstrassCurve.Jacobian.add_of_Y_eq {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 = Q 1 * P 2 ^ 3) (hy' : P 1 * Q 2 ^ 3 = W.negY Q * P 2 ^ 3) :
                                                              W.add P Q = W.dblU P ![1, 1, 0]
                                                              theorem WeierstrassCurve.Jacobian.add_of_Y_ne {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 Q 1 * P 2 ^ 3) :
                                                              W.add P Q = addU P Q ![1, 1, 0]
                                                              theorem WeierstrassCurve.Jacobian.add_of_Y_ne' {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy : P 1 * Q 2 ^ 3 W.negY Q * P 2 ^ 3) :
                                                              W.add P Q = W.dblZ P ![(toAffine W).addX (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), (toAffine W).addY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), 1]
                                                              theorem WeierstrassCurve.Jacobian.add_of_X_ne {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 Q 0 * P 2 ^ 2) :
                                                              W.add P Q = addZ P Q ![(toAffine W).addX (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), (toAffine W).addY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), 1]
                                                              theorem WeierstrassCurve.Jacobian.nonsingular_add {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Nonsingular P) (hQ : W.Nonsingular Q) :
                                                              W.Nonsingular (W.add P Q)
                                                              noncomputable def WeierstrassCurve.Jacobian.addMap {R : Type r} [CommRing R] (W' : Jacobian R) (P Q : PointClass R) :

                                                              The addition of two Jacobian point classes on a Weierstrass curve W.

                                                              If P and Q are two Jacobian point representatives on W, then W.addMap ⟦P⟧ ⟦Q⟧ is definitionally equivalent to W.add P Q.

                                                              Equations
                                                              Instances For
                                                                theorem WeierstrassCurve.Jacobian.addMap_eq {R : Type r} [CommRing R] {W' : Jacobian R} (P Q : Fin 3R) :
                                                                theorem WeierstrassCurve.Jacobian.addMap_of_Z_eq_zero_left {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} {Q : PointClass F} (hP : W.Nonsingular P) (hQ : W.NonsingularLift Q) (hPz : P 2 = 0) :
                                                                W.addMap P Q = Q
                                                                theorem WeierstrassCurve.Jacobian.addMap_of_Z_eq_zero_right {F : Type u} [Field F] {W : Jacobian F} {P : PointClass F} {Q : Fin 3F} (hP : W.NonsingularLift P) (hQ : W.Nonsingular Q) (hQz : Q 2 = 0) :
                                                                W.addMap P Q = P
                                                                theorem WeierstrassCurve.Jacobian.addMap_of_Y_eq {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Nonsingular P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hx : P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2) (hy' : P 1 * Q 2 ^ 3 = W.negY Q * P 2 ^ 3) :
                                                                theorem WeierstrassCurve.Jacobian.addMap_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Equation P) (hQ : W.Equation Q) (hPz : P 2 0) (hQz : Q 2 0) (hxy : ¬(P 0 * Q 2 ^ 2 = Q 0 * P 2 ^ 2 P 1 * Q 2 ^ 3 = W.negY Q * P 2 ^ 3)) :
                                                                W.addMap P Q = ![(toAffine W).addX (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), (toAffine W).addY (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) ((toAffine W).slope (P 0 / P 2 ^ 2) (Q 0 / Q 2 ^ 2) (P 1 / P 2 ^ 3) (Q 1 / Q 2 ^ 3)), 1]

                                                                Nonsingular rational points #

                                                                structure WeierstrassCurve.Jacobian.Point {R : Type r} [CommRing R] (W' : Jacobian R) :

                                                                A nonsingular Jacobian point on a Weierstrass curve W.

                                                                • point : PointClass R

                                                                  The Jacobian point class underlying a nonsingular Jacobian point on W.

                                                                • nonsingular : W'.NonsingularLift self.point

                                                                  The nonsingular condition underlying a nonsingular Jacobian point on W.

                                                                Instances For
                                                                  theorem WeierstrassCurve.Jacobian.Point.ext {R : Type r} {inst✝ : CommRing R} {W' : Jacobian R} {x y : W'.Point} (point : x.point = y.point) :
                                                                  x = y

                                                                  The natural map from a nonsingular point on a Weierstrass curve in affine coordinates to its corresponding nonsingular Jacobian point.

                                                                  Equations
                                                                  Instances For

                                                                    The negation of a nonsingular Jacobian point on a Weierstrass curve W.

                                                                    Given a nonsingular Jacobian point P on W, use -P instead of neg P.

                                                                    Equations
                                                                    Instances For
                                                                      noncomputable def WeierstrassCurve.Jacobian.Point.add {F : Type u} [Field F] {W : Jacobian F} (P Q : W.Point) :

                                                                      The addition of two nonsingular Jacobian points on a Weierstrass curve W.

                                                                      Given two nonsingular Jacobian points P and Q on W, use P + Q instead of add P Q.

                                                                      Equations
                                                                      Instances For
                                                                        theorem WeierstrassCurve.Jacobian.Point.add_def {F : Type u} [Field F] {W : Jacobian F} (P Q : W.Point) :
                                                                        P + Q = P.add Q

                                                                        Equivalence with affine coordinates #

                                                                        noncomputable def WeierstrassCurve.Jacobian.Point.toAffine {F : Type u} [Field F] (W : Jacobian F) (P : Fin 3F) :

                                                                        The natural map from a nonsingular Jacobian point representative on a Weierstrass curve to its corresponding nonsingular point in affine coordinates.

                                                                        Equations
                                                                        Instances For
                                                                          theorem WeierstrassCurve.Jacobian.Point.toAffine_of_singular {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hP : ¬W.Nonsingular P) :
                                                                          toAffine W P = 0
                                                                          theorem WeierstrassCurve.Jacobian.Point.toAffine_of_Z_eq_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hPz : P 2 = 0) :
                                                                          toAffine W P = 0
                                                                          theorem WeierstrassCurve.Jacobian.Point.toAffine_of_Z_ne_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hP : W.Nonsingular P) (hPz : P 2 0) :
                                                                          theorem WeierstrassCurve.Jacobian.Point.toAffine_smul {F : Type u} [Field F] {W : Jacobian F} (P : Fin 3F) {u : F} (hu : IsUnit u) :
                                                                          toAffine W (u P) = toAffine W P
                                                                          theorem WeierstrassCurve.Jacobian.Point.toAffine_of_equiv {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (h : P Q) :
                                                                          theorem WeierstrassCurve.Jacobian.Point.toAffine_neg {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hP : W.Nonsingular P) :
                                                                          toAffine W (W.neg P) = -toAffine W P
                                                                          theorem WeierstrassCurve.Jacobian.Point.toAffine_add {F : Type u} [Field F] {W : Jacobian F} {P Q : Fin 3F} (hP : W.Nonsingular P) (hQ : W.Nonsingular Q) :
                                                                          toAffine W (W.add P Q) = toAffine W P + toAffine W Q

                                                                          The natural map from a nonsingular Jacobian point on a Weierstrass curve W to its corresponding nonsingular point in affine coordinates.

                                                                          If hP is the nonsingular condition underlying a nonsingular Jacobian point P on W, then toAffineLift ⟨hP⟩ is definitionally equivalent to toAffine W P.

                                                                          Equations
                                                                          Instances For
                                                                            theorem WeierstrassCurve.Jacobian.Point.toAffineLift_of_Z_eq_zero {F : Type u} [Field F] {W : Jacobian F} {P : Fin 3F} (hP : W.NonsingularLift P) (hPz : P 2 = 0) :

                                                                            The addition-preserving equivalence between the type of nonsingular Jacobian points on a Weierstrass curve W and the type of nonsingular points W⟮F⟯ in affine coordinates.

                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            Instances For

                                                                              Maps across ring homomorphisms #

                                                                              theorem WeierstrassCurve.Jacobian.Equation.map {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] (f : R →+* S) {P : Fin 3R} (h : W'.Equation P) :
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_equation {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] {f : R →+* S} (hf : Function.Injective f) (P : Fin 3R) :
                                                                              (map W' f).toJacobian.Equation (f P) W'.Equation P
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_nonsingular {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] {f : R →+* S} (hf : Function.Injective f) (P : Fin 3R) :
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_negY {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] (f : R →+* S) (P : Fin 3R) :
                                                                              (map W' f).toJacobian.negY (f P) = f (W'.negY P)
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_neg {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] (f : R →+* S) (P : Fin 3R) :
                                                                              (map W' f).toJacobian.neg (f P) = f W'.neg P
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_dblU {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] (f : R →+* S) (P : Fin 3R) :
                                                                              (map W' f).toJacobian.dblU (f P) = f (W'.dblU P)
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_dblZ {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] (f : R →+* S) (P : Fin 3R) :
                                                                              (map W' f).toJacobian.dblZ (f P) = f (W'.dblZ P)
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_dblX {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] (f : R →+* S) (P : Fin 3R) :
                                                                              (map W' f).toJacobian.dblX (f P) = f (W'.dblX P)
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_negDblY {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] (f : R →+* S) (P : Fin 3R) :
                                                                              (map W' f).toJacobian.negDblY (f P) = f (W'.negDblY P)
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_dblY {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] (f : R →+* S) (P : Fin 3R) :
                                                                              (map W' f).toJacobian.dblY (f P) = f (W'.dblY P)
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_dblXYZ {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] (f : R →+* S) (P : Fin 3R) :
                                                                              (map W' f).toJacobian.dblXYZ (f P) = f W'.dblXYZ P
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_addU {F : Type u} [Field F] {K : Type v} [Field K] (f : F →+* K) (P Q : Fin 3F) :
                                                                              addU (f P) (f Q) = f (addU P Q)
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_addZ {R : Type r} [CommRing R] {S : Type v} [CommRing S] (f : R →+* S) (P Q : Fin 3R) :
                                                                              addZ (f P) (f Q) = f (addZ P Q)
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_addX {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] (f : R →+* S) (P Q : Fin 3R) :
                                                                              (map W' f).toJacobian.addX (f P) (f Q) = f (W'.addX P Q)
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_negAddY {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] (f : R →+* S) (P Q : Fin 3R) :
                                                                              (map W' f).toJacobian.negAddY (f P) (f Q) = f (W'.negAddY P Q)
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_addY {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] (f : R →+* S) (P Q : Fin 3R) :
                                                                              (map W' f).toJacobian.addY (f P) (f Q) = f (W'.addY P Q)
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_addXYZ {R : Type r} [CommRing R] {W' : Jacobian R} {S : Type v} [CommRing S] (f : R →+* S) (P Q : Fin 3R) :
                                                                              (map W' f).toJacobian.addXYZ (f P) (f Q) = f W'.addXYZ P Q
                                                                              @[simp]
                                                                              theorem WeierstrassCurve.Jacobian.map_add {F : Type u} [Field F] {W : Jacobian F} {K : Type v} [Field K] (f : F →+* K) {P Q : Fin 3F} (hP : W.Nonsingular P) (hQ : W.Nonsingular Q) :
                                                                              (map W f).toJacobian.add (f P) (f Q) = f W.add P Q

                                                                              Base changes across algebra homomorphisms #

                                                                              theorem WeierstrassCurve.Jacobian.baseChange_equation {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type v} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] {f : A →ₐ[S] B} (hf : Function.Injective f) (P : Fin 3A) :
                                                                              theorem WeierstrassCurve.Jacobian.baseChange_nonsingular {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type v} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] {f : A →ₐ[S] B} (hf : Function.Injective f) (P : Fin 3A) :
                                                                              theorem WeierstrassCurve.Jacobian.baseChange_negY {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type v} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P : Fin 3A) :
                                                                              (baseChange W' B).toJacobian.negY (f P) = f ((baseChange W' A).toJacobian.negY P)
                                                                              theorem WeierstrassCurve.Jacobian.baseChange_neg {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type v} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P : Fin 3A) :
                                                                              (baseChange W' B).toJacobian.neg (f P) = f (baseChange W' A).toJacobian.neg P
                                                                              theorem WeierstrassCurve.Jacobian.baseChange_dblU {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type v} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P : Fin 3A) :
                                                                              (baseChange W' B).toJacobian.dblU (f P) = f ((baseChange W' A).toJacobian.dblU P)
                                                                              theorem WeierstrassCurve.Jacobian.baseChange_dblZ {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type v} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P : Fin 3A) :
                                                                              (baseChange W' B).toJacobian.dblZ (f P) = f ((baseChange W' A).toJacobian.dblZ P)
                                                                              theorem WeierstrassCurve.Jacobian.baseChange_dblX {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type v} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P : Fin 3A) :
                                                                              (baseChange W' B).toJacobian.dblX (f P) = f ((baseChange W' A).toJacobian.dblX P)
                                                                              theorem WeierstrassCurve.Jacobian.baseChange_negDblY {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type v} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P : Fin 3A) :
                                                                              theorem WeierstrassCurve.Jacobian.baseChange_dblY {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type v} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P : Fin 3A) :
                                                                              (baseChange W' B).toJacobian.dblY (f P) = f ((baseChange W' A).toJacobian.dblY P)
                                                                              theorem WeierstrassCurve.Jacobian.baseChange_dblXYZ {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type v} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P : Fin 3A) :
                                                                              theorem WeierstrassCurve.Jacobian.baseChange_addX {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type v} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P Q : Fin 3A) :
                                                                              (baseChange W' B).toJacobian.addX (f P) (f Q) = f ((baseChange W' A).toJacobian.addX P Q)
                                                                              theorem WeierstrassCurve.Jacobian.baseChange_negAddY {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type v} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P Q : Fin 3A) :
                                                                              (baseChange W' B).toJacobian.negAddY (f P) (f Q) = f ((baseChange W' A).toJacobian.negAddY P Q)
                                                                              theorem WeierstrassCurve.Jacobian.baseChange_addY {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type v} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P Q : Fin 3A) :
                                                                              (baseChange W' B).toJacobian.addY (f P) (f Q) = f ((baseChange W' A).toJacobian.addY P Q)
                                                                              theorem WeierstrassCurve.Jacobian.baseChange_addXYZ {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] {A : Type u} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type v} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A →ₐ[S] B) (P Q : Fin 3A) :
                                                                              (baseChange W' B).toJacobian.addXYZ (f P) (f Q) = f (baseChange W' A).toJacobian.addXYZ P Q
                                                                              theorem WeierstrassCurve.Jacobian.baseChange_add {F : Type u} [Field F] {R : Type r} [CommRing R] (W' : Jacobian R) {S : Type s} [CommRing S] [Algebra R S] [Algebra R F] [Algebra S F] [IsScalarTower R S F] {K : Type v} [Field K] [Algebra R K] [Algebra S K] [IsScalarTower R S K] (f : F →ₐ[S] K) {P Q : Fin 3F} (hP : (baseChange W' F).toJacobian.Nonsingular P) (hQ : (baseChange W' F).toJacobian.Nonsingular Q) :
                                                                              (baseChange W' K).toJacobian.add (f P) (f Q) = f (baseChange W' F).toJacobian.add P Q
                                                                              @[reducible, inline]

                                                                              An abbreviation for WeierstrassCurve.Jacobian.Point.fromAffine for dot notation.

                                                                              Equations
                                                                              Instances For