Coercing sets to types. #
This file defines Set.Elem s
as the type of all elements of the set s
.
More advanced theorems about these definitions are located in other files in Mathlib/Data/Set
.
Main definitions #
Set.Elem
: coercion of a set to a type; it is reducibly equal to{x // x ∈ s}
;
@[reducible]
Given the set s
, Elem s
is the Type
of element of s
.
It is currently an abbreviation so that instance coming from Subtype
are available.
If you're interested in making it a def
, as it probably should be,
you'll then need to create additional instances (and possibly prove lemmas about them).
See e.g. Mathlib.Data.Set.Order
.
Instances For
- Cardinal.small_Icc
- Cardinal.small_Ico
- Cardinal.small_Iic
- Cardinal.small_Iio
- Cardinal.small_Ioc
- Cardinal.small_Ioo
- Finite.Set.finite_biUnion'
- Finite.Set.finite_biUnion''
- Finite.Set.finite_diff
- Finite.Set.finite_iInter
- Finite.Set.finite_iUnion
- Finite.Set.finite_image
- Finite.Set.finite_insert
- Finite.Set.finite_inter_of_left
- Finite.Set.finite_inter_of_right
- Finite.Set.finite_range
- Finite.Set.finite_replacement
- Finite.Set.finite_sUnion
- Finite.Set.finite_sep
- Finite.Set.finite_union
- Finset.instNonemptyElemToSetInsert
- FinsetCoe.fintype
- Nat.Subtype.orderBot
- Nat.Subtype.semilatticeSup
- Set.OrdConnected.isPredArchimedean
- Set.OrdConnected.isSuccArchimedean
- Set.OrdConnected.predOrder
- Set.OrdConnected.succOrder
- Set.fintypeBiUnion'
- Set.fintypeDiff
- Set.fintypeDiffLeft
- Set.fintypeEmpty
- Set.fintypeImage
- Set.fintypeInsert
- Set.fintypeInsert'
- Set.fintypeInter
- Set.fintypeInterOfLeft
- Set.fintypeInterOfRight
- Set.fintypeLENat
- Set.fintypeLTNat
- Set.fintypeMap
- Set.fintypeMemFinset
- Set.fintypeRange
- Set.fintypeSep
- Set.fintypeSingleton
- Set.fintypeTop
- Set.fintypeUnion
- Set.fintypeUniv
- Set.fintypeiUnion
- Set.fintypesUnion
- Set.instDenselyOrdered
- Set.instIccUnique
- Set.instIsEmptyElemEmptyCollection
- Set.instNoMaxOrderElemIci
- Set.instNoMaxOrderElemIoi
- Set.instNoMinOrderElemIic
- Set.instNoMinOrderElemIio
- Set.instNonemptyElemImage
- Set.instNonemptyElemInsert
- Set.instNonemptyRange
- Set.instNonemptyTop
- Set.nonempty_Ici_subtype
- Set.nonempty_Iic_subtype
- Set.nonempty_Iio_subtype
- Set.nonempty_Ioi_subtype
- Set.subsingleton_coe_of_subsingleton
- Set.uniqueSingleton
- Set.univ.nonempty
- SetCoe.countable
- fixedPoints.completeLattice
- fixedPoints.instCompleteSemilatticeInfElemFixedPointsCoeOrderHom
- fixedPoints.instCompleteSemilatticeSupElemFixedPointsCoeOrderHom
- fixedPoints.instSemilatticeInfElemFixedPointsCoeOrderHom
- fixedPoints.instSemilatticeSupElemFixedPointsCoeOrderHom
- instCoeTCElem
- instNoMaxOrderElemIco
- instNoMaxOrderElemIio
- instNoMaxOrderElemIoo
- instNoMinOrderElemIoc
- instNoMinOrderElemIoi
- instNoMinOrderElemIoo
- small_biInter'
- small_biUnion
- small_diff
- small_iInter'
- small_iUnion
- small_image
- small_image2
- small_insert
- small_inter_of_left
- small_inter_of_right
- small_powerset
- small_range
- small_sInter'
- small_sUnion
- small_sep
- small_setPi
- small_setProd
- small_union
- small_univ
Coercion from a set to the corresponding subtype.
Equations
- Set.instCoeSortType = { coe := Set.Elem }
@[simp]