Ideals in a matrix ring #
This file defines left (resp. two-sided) ideals in a matrix semiring (resp. ring) over left (resp. two-sided) ideals in the base semiring (resp. ring). We also characterize Jacobson radicals of ideals in such rings.
Main results #
TwoSidedIdeal.equivMatricesOver
andTwoSidedIdeal.orderIsoMatricesOver
establish an order isomorphism between two-sided ideals in and those in .TwoSidedIdeal.jacobson_matricesOver
shows that for any two-sided ideal .
Left ideals in a matrix semiring #
def
Ideal.matricesOver
{R : Type u_1}
[Semiring R]
(n : Type u_2)
[Fintype n]
[DecidableEq n]
(I : Ideal R)
:
The left ideal of matrices with entries in I ≤ R
.
Equations
Instances For
@[simp]
theorem
Ideal.mem_matricesOver
{R : Type u_1}
[Semiring R]
(n : Type u_2)
[Fintype n]
[DecidableEq n]
(I : Ideal R)
(M : Matrix n n R)
:
theorem
Ideal.matricesOver_monotone
{R : Type u_1}
[Semiring R]
(n : Type u_2)
[Fintype n]
[DecidableEq n]
:
Monotone (matricesOver n)
theorem
Ideal.matricesOver_strictMono_of_nonempty
{R : Type u_1}
[Semiring R]
(n : Type u_2)
[Fintype n]
[DecidableEq n]
[Nonempty n]
:
@[simp]
theorem
Ideal.matricesOver_bot
{R : Type u_1}
[Semiring R]
(n : Type u_2)
[Fintype n]
[DecidableEq n]
:
@[simp]
theorem
Ideal.matricesOver_top
{R : Type u_1}
[Semiring R]
(n : Type u_2)
[Fintype n]
[DecidableEq n]
:
Jacobson radicals of left ideals in a matrix ring #
theorem
Ideal.stdBasisMatrix_mem_jacobson_matricesOver
{R : Type u_1}
[Ring R]
{n : Type u_2}
[Fintype n]
[DecidableEq n]
(I : Ideal R)
(x : R)
:
x ∈ I.jacobson → ∀ (i j : n), Matrix.stdBasisMatrix i j x ∈ (matricesOver n I).jacobson
A standard basis matrix is in
theorem
Ideal.matricesOver_jacobson_le
{R : Type u_1}
[Ring R]
{n : Type u_2}
[Fintype n]
[DecidableEq n]
(I : Ideal R)
:
For any left ideal
Two-sided ideals in a matrix ring #
def
TwoSidedIdeal.matricesOver
{R : Type u_1}
[Ring R]
(n : Type u_2)
[Fintype n]
(I : TwoSidedIdeal R)
:
TwoSidedIdeal (Matrix n n R)
The two-sided ideal of matrices with entries in I ≤ R
.
Equations
- TwoSidedIdeal.matricesOver n I = TwoSidedIdeal.mk' {M : Matrix n n R | ∀ (i j : n), M i j ∈ I} ⋯ ⋯ ⋯ ⋯ ⋯
Instances For
@[simp]
theorem
TwoSidedIdeal.mem_matricesOver
{R : Type u_1}
[Ring R]
(n : Type u_2)
[Fintype n]
(I : TwoSidedIdeal R)
(M : Matrix n n R)
:
theorem
TwoSidedIdeal.matricesOver_monotone
{R : Type u_1}
[Ring R]
(n : Type u_2)
[Fintype n]
:
Monotone (matricesOver n)
@[simp]
@[simp]
theorem
TwoSidedIdeal.asIdeal_matricesOver
{R : Type u_1}
[Ring R]
(n : Type u_2)
[Fintype n]
[DecidableEq n]
(I : TwoSidedIdeal R)
:
Two-sided ideals in
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
TwoSidedIdeal.equivMatricesOver_apply
{R : Type u_1}
[Ring R]
{n : Type u_3}
[Fintype n]
(i j : n)
(I : TwoSidedIdeal R)
:
def
TwoSidedIdeal.orderIsoMatricesOver
{R : Type u_1}
[Ring R]
{n : Type u_3}
[Fintype n]
(i j : n)
:
Two-sided ideals in equivMatricesOver
.
Equations
- TwoSidedIdeal.orderIsoMatricesOver i j = { toEquiv := TwoSidedIdeal.equivMatricesOver i j, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
TwoSidedIdeal.orderIsoMatricesOver_symm_apply_ringCon_r
{R : Type u_1}
[Ring R]
{n : Type u_3}
[Fintype n]
(i j : n)
(J : TwoSidedIdeal (Matrix n n R))
(x y : R)
:
@[simp]
theorem
TwoSidedIdeal.orderIsoMatricesOver_apply_ringCon_r
{R : Type u_1}
[Ring R]
{n : Type u_3}
[Fintype n]
(i j : n)
(I : TwoSidedIdeal R)
(x y : Matrix n n R)
:
Jacobson radicals of two-sided ideals in a matrix ring #
theorem
TwoSidedIdeal.jacobson_matricesOver
{R : Type u_1}
[Ring R]
{n : Type u_2}
[Fintype n]
[DecidableEq n]
(I : TwoSidedIdeal R)
:
For any two-sided ideal
theorem
TwoSidedIdeal.matricesOver_jacobson_bot
{R : Type u_1}
[Ring R]
{n : Type u_2}
[Fintype n]
[DecidableEq n]
: