Documentation
Mathlib
.
Order
.
Filter
.
AtTopBot
.
Prod
Search
return to top
source
Imports
Init
Mathlib.Data.Finset.Prod
Mathlib.Order.Filter.Prod
Mathlib.Order.Filter.AtTopBot.Tendsto
Imported by
Filter
.
prod_atTop_atTop_eq
Filter
.
tendsto_finset_prod_atTop
Filter
.
prod_atBot_atBot_eq
Filter
.
prod_map_atTop_eq
Filter
.
prod_map_atBot_eq
Filter
.
tendsto_atBot_diagonal
Filter
.
tendsto_atTop_diagonal
Filter
.
Tendsto
.
prod_map_prod_atBot
Filter
.
Tendsto
.
prod_map_prod_atTop
Filter
.
Tendsto
.
prod_atBot
Filter
.
Tendsto
.
prod_atTop
Filter.atTop
and
Filter.atBot
filters on products
#
source
theorem
Filter
.
prod_atTop_atTop_eq
{
α
:
Type
u_3}
{
β
:
Type
u_4}
[
Preorder
α
]
[
Preorder
β
]
:
atTop
×ˢ
atTop
=
atTop
source
theorem
Filter
.
tendsto_finset_prod_atTop
{
ι
:
Type
u_1}
{
ι'
:
Type
u_2}
:
Tendsto
(fun (
p
:
Finset
ι
×
Finset
ι'
) =>
p
.1
×ˢ
p
.2
)
atTop
atTop
source
theorem
Filter
.
prod_atBot_atBot_eq
{
α
:
Type
u_3}
{
β
:
Type
u_4}
[
Preorder
α
]
[
Preorder
β
]
:
atBot
×ˢ
atBot
=
atBot
source
theorem
Filter
.
prod_map_atTop_eq
{
α₁
:
Type
u_6}
{
α₂
:
Type
u_7}
{
β₁
:
Type
u_8}
{
β₂
:
Type
u_9}
[
Preorder
β₁
]
[
Preorder
β₂
]
(
u₁
:
β₁
→
α₁
)
(
u₂
:
β₂
→
α₂
)
:
map
u₁
atTop
×ˢ
map
u₂
atTop
=
map
(
Prod.map
u₁
u₂
)
atTop
source
theorem
Filter
.
prod_map_atBot_eq
{
α₁
:
Type
u_6}
{
α₂
:
Type
u_7}
{
β₁
:
Type
u_8}
{
β₂
:
Type
u_9}
[
Preorder
β₁
]
[
Preorder
β₂
]
(
u₁
:
β₁
→
α₁
)
(
u₂
:
β₂
→
α₂
)
:
map
u₁
atBot
×ˢ
map
u₂
atBot
=
map
(
Prod.map
u₁
u₂
)
atBot
source
theorem
Filter
.
tendsto_atBot_diagonal
{
α
:
Type
u_3}
[
Preorder
α
]
:
Tendsto
(fun (
a
:
α
) =>
(
a
,
a
)
)
atBot
atBot
source
theorem
Filter
.
tendsto_atTop_diagonal
{
α
:
Type
u_3}
[
Preorder
α
]
:
Tendsto
(fun (
a
:
α
) =>
(
a
,
a
)
)
atTop
atTop
source
theorem
Filter
.
Tendsto
.
prod_map_prod_atBot
{
α
:
Type
u_3}
{
β
:
Type
u_4}
{
γ
:
Type
u_5}
[
Preorder
γ
]
{
F
:
Filter
α
}
{
G
:
Filter
β
}
{
f
:
α
→
γ
}
{
g
:
β
→
γ
}
(
hf
:
Tendsto
f
F
atBot
)
(
hg
:
Tendsto
g
G
atBot
)
:
Tendsto
(
Prod.map
f
g
)
(
F
×ˢ
G
)
atBot
source
theorem
Filter
.
Tendsto
.
prod_map_prod_atTop
{
α
:
Type
u_3}
{
β
:
Type
u_4}
{
γ
:
Type
u_5}
[
Preorder
γ
]
{
F
:
Filter
α
}
{
G
:
Filter
β
}
{
f
:
α
→
γ
}
{
g
:
β
→
γ
}
(
hf
:
Tendsto
f
F
atTop
)
(
hg
:
Tendsto
g
G
atTop
)
:
Tendsto
(
Prod.map
f
g
)
(
F
×ˢ
G
)
atTop
source
theorem
Filter
.
Tendsto
.
prod_atBot
{
α
:
Type
u_3}
{
γ
:
Type
u_5}
[
Preorder
α
]
[
Preorder
γ
]
{
f
g
:
α
→
γ
}
(
hf
:
Tendsto
f
atBot
atBot
)
(
hg
:
Tendsto
g
atBot
atBot
)
:
Tendsto
(
Prod.map
f
g
)
atBot
atBot
source
theorem
Filter
.
Tendsto
.
prod_atTop
{
α
:
Type
u_3}
{
γ
:
Type
u_5}
[
Preorder
α
]
[
Preorder
γ
]
{
f
g
:
α
→
γ
}
(
hf
:
Tendsto
f
atTop
atTop
)
(
hg
:
Tendsto
g
atTop
atTop
)
:
Tendsto
(
Prod.map
f
g
)
atTop
atTop