Documentation

Mathlib.RingTheory.HopkinsLevitzki

The Hopkins–Levitzki theorem #

Main results #

Reference #

theorem IsSemiprimaryRing.induction (R₀ : Type u_1) (R : Type u_2) (M : Type u) [Ring R₀] [Ring R] [Module R₀ R] [AddCommGroup M] [Module R₀ M] [Module R M] [IsScalarTower R₀ R M] [IsSemiprimaryRing R] {P : (M : Type u) → [inst : AddCommGroup M] → [inst_1 : Module R₀ M] → [inst : Module R M] → Prop} (h0 : ∀ (M : Type u) [inst : AddCommGroup M] [inst_1 : Module R₀ M] [inst_2 : Module R M] [inst_3 : IsScalarTower R₀ R M] [inst_4 : IsSemisimpleModule R M], Module.IsTorsionBySet R M (Ring.jacobson R)P M) (h1 : ∀ (M : Type u) [inst : AddCommGroup M] [inst_1 : Module R₀ M] [inst_2 : Module R M] [inst_3 : IsScalarTower R₀ R M], let N := Ring.jacobson R ; P NP (M N)P M) :
P M
theorem IsSemiprimaryRing.finite_of_isNoetherian (R₀ : Type u_1) (R : Type u_2) (M : Type u) [Ring R₀] [Ring R] [Module R₀ R] [AddCommGroup M] [Module R₀ M] [Module R M] [IsScalarTower R₀ R M] [IsSemiprimaryRing R] [IsScalarTower R₀ R R] [Module.Finite R₀ (R Ring.jacobson R)] [IsNoetherian R M] :
theorem IsSemiprimaryRing.finite_of_isArtinian (R₀ : Type u_1) (R : Type u_2) (M : Type u) [Ring R₀] [Ring R] [Module R₀ R] [AddCommGroup M] [Module R₀ M] [Module R M] [IsScalarTower R₀ R M] [IsSemiprimaryRing R] [IsScalarTower R₀ R R] [Module.Finite R₀ (R Ring.jacobson R)] [IsArtinian R M] :

Stacks Tag 00JB (A ring is Artinian if and only if it has finite length as a module over itself.)

Stacks Tag 00JB (A ring is Artinian if and only if it has finite length as a module over itself. Any such ring is both Artinian and Noetherian.)

A finitely generated Artinian module over a commutative ring is Noetherian. This is not necessarily the case over a noncommutative ring, see https://mathoverflow.net/a/61700.